
 1

IIMC Prashanth Kumar K(Head-Dept of Computers)

B.Sc (Computer Science)

Programming in Java

Unit-III

It is common to make mistakes while developing as well as typing a program.

A mistake might lead to an error causing to program to produce unexpected results.

Errors are the wrongs that can make a program go wrong. In computer terminology

errors may be referred to as bugs. An error may produce an incorrect output or may

terminate the execution of the program abruptly or even may cause the system to

crash. It is therefore important to detect and manage properly all the possible errors.

Types of Errors: Errors may broadly be classified into two categories:

• Compile-time errors

• Run-time errors

Compile-Time Errors: All syntax errors will be detected and displayed by the Java

compiler and therefore these errors are known as compile-time errors. Whenever the

compiler displays an error, it will not create the .class file. It is necessary to fix these

errors to get it compiled. It becomes an easy job to a programmer to correct these

errors because Java compiler tells us where the errors are located.

The most common errors are:
• Missing semicolons

• Missing (or mismatch of) brackets in classes and methods
• Misspelling of identifiers and keywords
• Missing double quotes in strings
• Use of undeclared variables Incompatible types in assignments / initialization
• Bad references to objects
• Use of = in place of = = operator

Run-Time Errors: Sometimes, a program may compile successfully creating the .class file
but may not run properly. Such programs may produce wrong results due to wrong logic
or may terminate due to errors such as stack overflow.
Most common run-time errors are:

• Dividing an integer by zero

• Accessing an element that is out of the bounds of an array

• Trying to store a value into an array of an incompatible class or type

• Trying to cast an instance of a class to one of its subclasses

• Passing a parameter that is not in a valid range or value for a method

• Trying to illegally change the state of a thread

• Attempting to use a negative size for an array

• Using a null object reference to access a method or a variable.
• Converting invalid string to a number
• Accessing a character that is out of bounds of a string

1. What is an Error? Explain the different types of Errors

2. Explain Exception in Java.

 2

IIMC Prashanth Kumar K(Head-Dept of Computers)

Exception: An exception is a condition that is caused by a run-time error in the

program. When the Java interpreter encounters an error such as dividing an integer

by zero, it creates an exception object and throws it (i.e., informs us that an error

has occurred).

If the object is not caught and handled properly, the interpreter will display

an error message and will terminate (stop) the program. If we want the program to

continue with the execution of the remaining code, then we should try to catch the

exception object thrown by the error condition and then display an appropriate

(proper) message for taking corrective actions. This task is known as Exception

Handling.

The purpose of exception handling mechanism is to provide a means to detect

(find) and report an exceptional circumstance so that appropriate can be taken. The

mechanism suggests incorporation (to include) of a separate error handling code that

performs the following tasks:

• Find the problem (Hit the exception)

• Inform that an error has occurred (Throw the exception)

• Receive the error information (Catch the exception)

• Take corrective actions (Handle the exception)

Some common exceptions that we must watch out for catching are listed below:

• ArithmeticException – Caused by math errors such as division by zero

• ArrayIndexOutOfBoundsException – Caused by bad array indexes

• ArrayStoreException – Caused when a program tries to store the wrong type of

data in an array

• FileNotFoundException – Caused by an attempt to access a nonexistent file

• IOException – Caused by general I/O failures, such as inability to read from a

file

• NullPointerException – Caused by referencing a null object

• NumberFormatException – Caused when a conversion between strings and

number fails

• OutOfMemoryException – Caused when there’s not enough memory to allocate

a new object.

• SecurityException – Caused when an applet tries to perform an action not

allowed by the browser’s security setting

• StackOverflowException – Caused when the system runs out of stack space.

Exception Handling: If the object is not caught and handled properly, the

interpreter will display an error message and will terminate (stop) the program. If we

want the program to continue with the execution of the remaining code, then we

should try to catch the exception object thrown by the error condition and then

display an appropriate (proper) message for taking corrective actions. This task is

known as Exception Handling.

 3. Explain Pre-defined Exceptions in Java.

4. Explain the process of Exception Handling in Java.

 3

IIMC Prashanth Kumar K(Head-Dept of Computers)

 The basic concept of exception handling are throwing an exception and

catching it.

Java uses a keyword try to preface a block of code that is likely to cause an error
condition and throw an exception. A catch block defined by the keyword catch catches
the exception thrown by the try block and handles it appropriately. The catch block is
added immediately after the try block. The following syntax illustrates the use of simple
try and catch statements:

………………………….

try

{

 statement; // generates an exception

}

catch (Exception-type e)

{

 statement; // process the exception

}

……………………………..

……………………………….

try & catch: The try block can have one or more statements that could

generate an exception. If any statement generates an exception, the remaining

statements in the block are skipped and execution jumps to the catch blocks that is

placed next to the try block.

The catch block too can have one or more statements that are necessary to

process the exception. Remember that every try statement should be followed by at

least one catch statement; otherwise compilation error will occur.

The catch statement works like a method definition. The catch statement is

passed a single parameter, which is reference to the exception object thrown (by the

try block). If the catch parameter matches with the type of exception object, then

the exception is caught and statements in the catch block will be executed.

Otherwise, the exception is not caught and the default exception handler will cause

the execution to terminate.

class ZeroTest

5. Write a program to handle division by zero exception.

 4

IIMC Prashanth Kumar K(Head-Dept of Computers)

{

public static void main(String as[])

{

int a=5;

int b=0;

try

{

System.out.println(“Division=”+ (a/b));

}

catch(ArithmeticException e)

{

System.out.println(“Division by zero is not possible”);

}

}

}

It is possible to have more than one catch statement in the catch block. When

an exception in a try block is generated, the Java treats the multiple catch

statements like case in a switch statement. The first statement whose parameter

matches with the exception object will be executed, and the remaining statements

will be skipped.

Java does not require any processing of the exception at all. We can simply

have a catch statement with an empty block to avoid program abortion.

Example: catch (Exception e);

The catch statement simply ends with a semicolon, which does nothing. This

statement will catch an exception and then ignore it.

Syntax:

………………………

try

{

 statement; // generates an exception

}

catch (Exception-Type-1 e)

{

 statement; // process exception type 1

}

catch (Exception-Type-2 e)

{

 statement; // process exception type 2

}

catch (Exception-Type-N e)

{

 statement; // process exception type N

}

…………………………….

6. How many catch blocks can we use with one try block?

 5

IIMC Prashanth Kumar K(Head-Dept of Computers)

There may be times when we would like to throw our own exceptions. We can do this

by using the keyword throw as follows: throw new Throwable_subclass;

Example: throw new ArithmeticException();

throw new NumberFormatException();

import java.lang.Exception;

class MyException extends Exception

{

MyException(String message)

{

super(message);

}

}

class TestMyException

{

public static void main(String args[])

{

int x = 5, y = 1000;

try

{

float z = (float)x/(float)y;

if(z < 0.01)

{

throw new MyException("Number is too small");

}

}

catch(MyException e)

{

System.out.println("caught my exception");

System.out.println(e.getMessage());

}

finally

{

System.out.println("I am always here");

}

}

}

Thread is a task or flow of execution that can be made to run using time-

sharing principle. It is important to remember that 'threads running in parallel' does

not really mean that they actually run at the same time. Since all the threads are

running on a single processor, the flow of execution is shared between the threads.

8. What is Thread?

7. Explain throwing our own exception in Java.

 6

IIMC Prashanth Kumar K(Head-Dept of Computers)

The Java interpreter handles the switching of control between the threads in such a

way that it appears they are running concurrently.

A Thread is similar to a program that has a single flow of control. It has a

beginning, a body and an end, and executes commands sequentially. A normal java

programming is a single-threaded program. That means, every java program will

have atleast one thread.

 Modern operating systems such as Windows 7,8,10 & 11 can execute several

programs simultaneously. This ability is known as Multi-Tasking. In other words, this is

called as Multi-Processing.

 In Java Terminology, this is called as Multi-Threading. It is a conceptual

programming paradigm where a program (process) is divided into two or more sub-

programs (processes), which can be implemented at the same time in parallel. It is a

powerful programming tool that makes Java distinctly different from its other

programming languages.

Light-weight Process: A thread is similar to a separate process, in that it can run

independently of other threads. But it is lightweight, since the operating system

doesn't have to give it its own memory space, and it shares memory with the other

threads in the process. It runs within the context of a program because threads or

sub-programs of a main application program.

Heavy-weight Process: In heavyweight processes in between threads that belong

to different programs. They demand separate memory.

9. What is the concept of Multi-Threading?

 7

IIMC Prashanth Kumar K(Head-Dept of Computers)

Creating threads in java is simple. Threads are implemented in the form of

objects that contain a method called run().The run() method is the heart of any

thread. It is the only method in which the thread’s behavior can be implemented.

public void run ()

{

 ... // Thread code

}

The run() method should be invoked by an object of the concerned thread. This can

be achieved by creating the thread and initiating it with the help of another method

called start().

A new thread can be created by two ways:

• By creating a Thread class: Define a class that extends Thread class and

override its run() method with the code required by the thread.

• By converting a class to thread: Defines a class that implements

Runnable interface. The Runnable interface has only one method run(),

that is to be defined in the method with the code to be executed by the

thread.

Extending Thread Class: we create a thread class that extends Thread class and

override its run() method with the code required by the thread.

To do this consider following steps:

• Declare the class that extends the Thread class.

public class MyThread extends Thread

{

}

• Implements the run() method that is responsible for executing the sequence

of code that the thread will execute.

 public void run()

{

 //Thread code

10. Explain the process of creation of Threads.

11. How to extend Thread class?

 8

IIMC Prashanth Kumar K(Head-Dept of Computers)

}

• create a thread object and call the start() method to initiate the thread

execution

MyThread mt=new MyThread();

mt.start();

Example:

public class MyThread extends Thread

{

 public void run()

 {

 System.out.println("Hello from a thread!");

 }

 public static void main(String args[])

 {

MyThread mt=new MyThread();

mt.start();

 }

}

Impelementing Runnable interface: we define a class that implements Runnable
interface. The Runnable interface has only one method , run(), that is to be
implemented by the class.

It includes the following steps:

• Declare a class that implements Runnable interface.

class MyThread implements Runnable

{

}

• Implement the run() method.

public void run()

{

 //Thread code

}

• Create a thread by defining an object that is instantiated from this "runnable"
class or create it within that class.

12. How to implement Runnable interface?

 9

IIMC Prashanth Kumar K(Head-Dept of Computers)

MyThread mt=new MyThread();

mt.start();

Example:

public class MyThread implements Runnable

{

 public void run()

 {

 System.out.println("Hello from a thread!");

 }

 public static void main(String args[])

 {

MyThread mt=new MyThread();

mt.start();

 }

}

Stopping a thread:

Whenever we want to stop a thread from running further, we may do so by calling

its stop() method. This causes a thread to stop immediately and move it to its

dead state. It forces the thread to stop abruptly before its completion i.e. it causes

premature death. To stop a thread we use the following syntax:

 mt.stop();

Blocking a Thread:

A thread can also be temporarily suspended or blocked from entering into the

runnable and subsequently running state by using either of the following thread

methods:

• sleep(t) // blocked for ‘t’ milliseconds

• suspend() // blocked until resume() method is invoked

• wait() // blocked until notify () is invoked

These methods cause the thread to go into the blocked (or not-runnable) state. The

thread will return to the runnable state when the specified time is elapsed in the

case of sleep(), the resume() method is invoked in the case of suspend(), and the

notify() method is called in the case of wait().

13. What are the two methods by which we may stop threads?

 10

IIMC Prashanth Kumar K(Head-Dept of Computers)

During the life time of a thread, there are many states it can enter. They include:

1. Newborn state

2. Runnable state

3. Running state

4. Blocked state

5. Dead state

A Thread is always in one of these five states. It can move from one state to

another via a variety of ways as follows:

Newborn State: When we create a thread object, the thread is born and is said to

be in newborn state. The thread is not yet scheduled for running. At this state, we

can do only one of the following things with it:

• Schedule it for running using start() method.

• Kill it using stop() method.

If scheduled, it moves to the runnable state If we attempt to use any other

method at this stage, an exception will be thrown.

Runnable State: The runnable state means that the thread is ready for execution

and is waiting for the availability of the processor. That is, the thread has joined the

14. Write about the Life Cycle of Thread.

 11

IIMC Prashanth Kumar K(Head-Dept of Computers)

queue of threads that are waiting for execution. If all threads have equal priority,

then they are given time slots for execution in round robin fashion, i.e., first-come,

first-serve manner. After its turn, the thread joins the queue again and waits for

next turn. This process of assigning time to threads is known as time-slicing.

However, if we want a thread to relinquish control to another thread to equal

priority before its turn comes, we can do so by using yield() method.

Running State: Running means that the processor has given its time to the thread

for its execution. The thread runs until it gives up control on its own or taken over

by other threads. When the thread is in its running state, we can ensure that the

control is in run() method of the thread.

• It has been suspended using suspend() method. A suspended thread can be

revived by using the resume() method. This approach is useful when we want

to suspend a thread for some time due to certain reason, but do not want to kill

it.

• It has been made to sleep. We can put a thread to sleep for a specified time

period using the method sleep(time) where time is in milliseconds. This means

that the thread is out of the queue during this time period. The thread re-enters

the runnable state as soon as this time period is elapsed.

• It has been told to wait until some event occurs. This is done using the wait()

method. The thread can be scheduled to run again using the notify() method.

Blocked State: A thread is said to be blocked when it is prevented from entering

into the runnable state and subsequently the running state. This happens when the

thread is suspended, sleeping, or waiting in order to satisfy certain requirements. A

blocked thread is considered “not runnable” but not dead and therefore fully qualified

to run again.

Dead State: Every thread has a life cycle. A running thread ends its life when it has

completed executing its run() method. It is a natural death. However, we can kill it

by sending the stop message to it at any state thus causing a premature death to it.

 12

IIMC Prashanth Kumar K(Head-Dept of Computers)

A thread can be killed as soon it is born, or while it is running, or even when it is in

“not runnable” (blocked) condition.

1. start() : This method is used to start a new thread. When this method is called

the thread enters the runnable state and this automatically invokes the run()

method .

void start()

2. run(): This method is the most important method in the thread like its heart and

soul. It contains the statements that define the actual task of the Thread. It should

be overridden in our class in the class of extending Thread class or implement in the

case of implementing Runnable interface.

void run()

{

// Thread Code

}

3. sleep(): This method is used to block the currently executing thread for the

specific time. After the elapse of the time the thread automatically comes into

runnable state.

void sleep(long time-in-milliseconds)

4. stop(): This method is used to stop the running thread even before the

completion of the task.

void stop()

5. wait() method: This method is used to block the currently executing thread until

the thread invokes notify() or notifyall() methods.

void wait()

6. suspend() method: This method is used to block the currently executing thread

until the thread invokes resume() method.

void suspend()

7. resume(): This method is used to bring the thread from blocked state to

runnable state when it is blocked by suspend() method.

void resume()

8. yield(): This method is used to bring the blocked thread to runnable state. If we

want a thread to give a chance to run before its turn comes, we can use the yield()

method.

void yield()

15. Write a note on various Thread methods.

 13

IIMC Prashanth Kumar K(Head-Dept of Computers)

9. setPriority(): This method is used to set the priority of the thread. The priority

is an integer value that ranges from 1 to 10. The default setting is NORM_PRIORITY

whose value is 5. The other constants are: MIN_PRIORITY (= 1) and MAX_

PRIORITY (= 10).

setPriority(int priority)

10. getPriority(): This method is used to get the priority of the thread. It returns

integer value.

int getPriority()

In Java, each thread is assigned a priority, which affects the order in which it is

scheduled for running. The threads of the same priority are given equal treatment by

the Java scheduler and, therefore, they share the processor on a first-come, first-

serve basis. Java permits us to set the priority of a thread using the setPriority()

method as follows:

ThreadName.setPriority(intNumber);

The intNumber is an integer value to which the thread's priority is set. The Thread

class defines several priority constants:

• MIN_PRIORITY = 1

• NORM_PRIORITY = 5

• MAX_PRIORITY = 10

The intNumber may assume one of these constants or any value between 1 and 10.

The default setting is NORM_PRIORITY. Most user-level processes should use

NORM_PRIORITY, plus or minus 1. Whenever multiple threads are ready for

execution, the Java system chooses the highest priority thread and executes it.

class A extends Thread

{

 public void run()

 {

 System.out.println("Thread A Started");

 for(int i=1;i<=5;i++)

 {

 System.out.println("Thread A -> No = " +i);

 }

 System.out.println("Exit from Thread A ");

 }

}

class B extends Thread

{

 public void run()

 {

 System.out.println("Thread B Started");

16. How do we set priorities of Thread? (Mar 2010) (Mar 2011)

 14

IIMC Prashanth Kumar K(Head-Dept of Computers)

 for(int i=1;i<=5;i++)

 {

 System.out.println("Thread B -> No = " +i);

 }

 System.out.println("Exit from Thread B ");

 }

}

class C extends Thread

{

 public void run()

 {

 System.out.println("Thread C Started");

 for(int i=1;i<=5;i++)

 {

 System.out.println("Thread C -> No = " +i);

 }

 System.out.println("Exit from Thread C ");

 }

}

class ThreadPriority

{

public static void main(String args[])

{

 A obja=new A();

 B objb=new B();

 C objc=new C();

 objc.setPriority(Thread.MAX_PRIORITY);

 objb.setPriority(obja.getPriority()+1);

 obja.setPriority(Thread.MIN_PRIORITY);

System.out.println("start thread A");

obja.start();

System.out.println("start thread B");

objb.start();

System.out.println("start thread C");

objc.start();

 }

}

Threads use their own data and methods provided inside their run() methods.

But if we wish to use data and methods outside the thread’s run() method, they may

compete for the same resources and may lead to serious problems. For example, one

thread may try to read a record from a file while another is still writing to the same

file. Depending on the situation, we may get strange results. Java enables us to

overcome this problem using a technique known as synchronization.

17. Explain Thread Synchronization.

 15

IIMC Prashanth Kumar K(Head-Dept of Computers)

Synchronization can be achieved by two ways:

• Synchronized method

• Synchronized block

Synchronized method: In case of Java, the keyword synchronized helps to solve

such problems by keeping a watch on such locations. For example, the method that

that will update a file may be declared as synchronized as shown below:

synchronized void update()

{

………….. // code here is synchronized

}

Synchronized block: When we declare a method synchronized, Java creates a

"monitor" and hands it over to the thread that calls the method first time. As long as

the thread runs, no other thread can enter the synchronized section of code. A

monitor is like a key and the thread that holds the key can only open the lock.

synchronized (lock-object)
{
.......... // code here is synchronized

}

The java.io package in Java provides classes and interfaces for system input and

output (I/O) through data streams, serialization, and file handling

The java.io package is largely based on the concept of streams, which represent a

continuous flow of data. There are two primary types of streams in Java:

❖ Input Streams: Used to read data (e.g., from a file or network).

1. FileInputStream

2. BufferedInputStream

❖ Output Streams: Used to write data (e.g., to a file or console).

1. FileOutputStream

2. BufferedOutputStream

❖ Byte Streams: Handle raw binary data (8-bit bytes). Useful when dealing

with binary data like images, videos or other media. All Input Streams and

Output Streams are examples of Byte Streams

Examples :InputStream, OutputStream, FileInputStream,FileOutputStream,

BufferedInputStream, BufferedOutputStream

The two file streams are

❖ FileInputStream

❖ FileOutputStream

FileInputStream

18. Write about java.io package.

19. Write about File Streams.

 16

IIMC Prashanth Kumar K(Head-Dept of Computers)

FileInputStream class is useful to read data from a file in the form of sequence of

bytes. FileInputStream is meant for reading streams of raw bytes such as image data

Objects can be created using the keyword new

FileInputStream fis = new FileInputStream("file1.txt");

FileOutputStream

FileOutputStream is an outputstream for writing data/streams of raw bytes to file or

storing data to file. FileOutputStream is a subclass of OutputStream

FileOutputStream fos = new FileInputStream("file1.txt");

FileOutputStream:

import java.io.*;

public class WriteToFile

{

 public static void main(String[] args)

 {

 try

 {

 FileOutputStream fos = new FileOutputStream("output.txt");

 OutputStreamWriter iow = new OutputStreamWriter(fos);

 BufferedWriter writer = new BufferedWriter(iow);

 String str = "Hello B.Sc.";

 writer.write(str);

 writer.flush();

 writer.close();

 } catch (IOException e) {

 e.printStackTrace(); // Handle the exception

 }

 }

}

FileInputStream:

import java.io.*;

public class ReadFromFile

{

 public static void main(String[] args)

 {

 try

 {

 FileInputStream fis = new FileInputStream("output.txt");

 InputStreamReader isr = new InputStreamReader(fis);

 BufferedReader reader = new BufferedReader(isr);

20. Demonstrate programs for FileInputStream and FileOutputStream.

 17

IIMC Prashanth Kumar K(Head-Dept of Computers)

 String s;

 while ((s = reader.readLine()) != null)

 {

 System.out.println(s); // Print each line from the file

 }

 reader.close();

 }

 catch (IOException e)

 {

 e.printStackTrace(); // Handle the exception

 }

 }

}

